baris dan deret kelas 10

Tema: Pola Bilangan, Barisan dan Deret Aritmatika Atau Geometri Sub. Tema : Barisan dan Deret Aritmatika Pembelajaran ke : 1 Alokasi waktu : 10 menit A. Kompetensi Peserta didik tidak berani presentasi di depan kelas dan tetapi berani berpendapat, bertanya atau menjawab pertanyaan guru 1 BahanAjar disusun dengan tujuan: 1. Menyediakan Bahan Ajar yang sesuai dengan tuntutan kurikulum dengan mempertimbangkan kebutuhan peserta didik, yakni Bahan Ajar yang sesuai dengan karakteristik dan setting atau lingkungan sosial peserta didik. 2. Membantu peserta didik dalam memperoleh alternatif Bahan Ajar di samping buku-buku teks yang terkadang sulit diperoleh 3. Memudahkan guru dalam Materikelas 10 SMA : Barisan dan Deret Geometri. Selasa, Maret 25, 2014. Setelah sebelumnya Salman Project membahas tentang Barisan Dan deret Aritmetika sekarang akan membahas tentang Barisan dan Deret Geometri. Dan juga Video pembelajaran yang akan membimbing kalian semua agar bisa mengerjakan soal BArisan dan Deret Geometri. Sekarang kita belajar rumus-rumusnya, ya! Pada barisan geometri dan deret geometri, terdapat tiga rumus yang harus kamu ketahui, yaitu rumus rasio, rumus Un, dan rumus Sn. Kita bahas satu per satu, ya! 1. Rumus Rasio pada Barisan dan Deret Geometri. Rasio adalah nilai pengali pada barisan dan deret. Berikutini penulis sajikan soal-soal beserta pembahasannya tentang barisan dan deret geometri. Soal-soal ini dikumpulkan dari berbagai sumber termasuk soal UN maupun SBMPTN. Soal juga dapat diunduh melalui tautan berikut: Download (PDF, 189 KB). Barisan dan Deret Geometri No Single Drop Rain Responsible Flood. Setelah sebelumnya Salman Project membahas tentang Barisan Dan deret Aritmetika sekarang akan membahas tentang Barisan dan Deret Geometri. Dan juga Video pembelajaran yang akan membimbing kalian semua agar bisa mengerjakan soal BArisan dan Deret Geometri. Untuk Video pembahasan Barisan dan Deret Geometri Kamu dapat melihatnya disini Pola dari barisan dan deret geometri tidaklah sama dengan pola dari barisan dan deret aritmatika. Untuk itu, Anda perlu berhati-hati jika menemukan suatu barisan atau deret bilangan. Supaya tidak keliru maka Anda harus bisa membedakan antara barisan dan deret aritmetika dengan barisan dan deret geometri. 1. Barisan Geometri Perhatikan barisan bilangan berikut. • 2, 4, 8, 16,… • 81, 27, 9, 3,… Pada kedua barisan tersebut, dapatkah Anda menentukan pola yang dimiliki oleh masing-masing barisan? Tentu saja pola yang didapat akan berbeda dengan pola yang Anda dapat ketika mempelajari barisan aritmetika. Selanjutnya, cobalah Anda bandingkan antara setiap dua suku yang berurutan pada masing-masing barisan tersebut. Apa yang Anda peroleh? Ketika Anda membandingkan setiap dua suku yang berurutan pada barisan tersebut, Anda akan mendapatkan perbandingan yang sama. Untuk barisan yang pertama, diperoleh perbandingan sebagai berikut. 4/2=2, 8/4=2, 16/8=2,…. Bilangan 2 disebut sebagai rasio dari barisan yang dilambangkan dengan r. Barisan yang memiliki rasio seperti ini dinamakan barisan geometri. 2. Deret Geometri Secara umum, dari suatu barisan geometri dengan dan rasio r, Anda dapat memperoleh bentuk umum deret geometri, yaitu = . Seperti pada deret aritmetika, jika Anda menjumlahkan barisan geometri maka Anda akan memperoleh deret geometri. Jika menyatakan jumlah n suku pertama dari suatu deret geometri maka Anda peroleh …1 Untuk mendapatkan rumus jumlah n suku pertama deret geometri, kalikanlah persamaan 1 dengan r, diperoleh …2 Seperti pada deret aritmetika, pada deret geometri pun Anda akan memperoleh jumlah deret geometri. Selanjutnya, cari selisih dari persamaan 1 dan persamaan 2. Dalam hal ini, Pandang Sehingga Definisi Deret Geometri Misalkan adalah barisan geometri maka pemjumlahan adalah deret geometri. Definisi Suku ke-n suatu barisan geometri adalah Un. Contoh Jika , dan = 8k + 4 maka = … a. 81 b. 162 c. 324 d. 648 e. 864 Jawab langkah pertama tentukan nilai r. = 3k / k = 3 Selanjutnya, tentukan nilai k. = 3 = 9k = 8k + 4 k = 4 Oleh karena = k maka = 4, dengan demikian, Rumus Jumlah n Suku Pertama dari Deret Geometri Misalkan merupakan deret geometri, dengan suku pertama adan rasio r, maka jumlah n suku pertama dari deret tersebut adalah atau Contoh Diketahui deret 4 + 12 + 36 + 108 … Tentukan a. rumus jumlah n suku pertama, b. jumlah 7 suku pertamanya Jawab 4 + 12 + 36 + 108 … Dari deret tersebut diketahui a = 4 dan r = 12/4 = 3 Jadi, rumus umum jumlah n suku pertama deret tersebut adalah Jumlah 7 suku pertama = 22187 – 1 = 4372 Jadi, jumlah 7 suku pertamanya adalah 3 tahun lalu Real Time2menit Barisan aritmatika adalah suatu barisan yang suku-sukunya diperoleh dengan cara menjumlahkan suatu konstanta pada suku sebelumnya. konstanta tersebut disebut dengan beda. suku-suku pada barisan dinyatakan dengan $U_n$ dan untuk suku pertama dinyatakan dengan U₁ atau a. Contoh 1Seorang karyawan toko mendapat gaji pertama sebesar Rp Setiap bulan Ia mendapat kenaikan gaji sebesar Rp Berapakah jumlah pendapatan yang diterima karyawan toko tersebut dalam waktu 1 tahun?PenyelesaianDiketahuia= [ Besaran gaji awal]b= [kenaikan tiap bulan yang diperoleh]n= 12 dalam 1 tahun ada 12 bulanDitanya berapa jumlah pendapatan yang diterima S₁₂ ?JawabS₁₂=n/2 {2a+n-1b} =12/2 {2 =6{ } =6{ =6 = Jadi, pendapatan karyawan toko dalam waktu 1 tahun sebesar Rp Contoh 2Pak BONI menerima honor pertama sebesar Rp Setiap tiga bulan gajinya naik sebesar Rp Hitunglah jumlah gaji Pak BONI setelah 2 tahun?PenyelesaianDiketahuia= gaji awal yang diterimab= kenaikan gaji tiap 3 bulann = 8 dalam 2 tahun terdapat 24 bulan sedangkan kenaikan gaji terjadi dalan 3 bulan sekali maka terjadi 8 kali kenaikan gaji selama 2 tahunditanya Jumlah seluruh gaji Pak BONI selama 2 {2a+n-1b} S₈=8/2 {2 =4{ } =4{ =4 = Jadi, jumlah seluruh gaji Pak BONI selama 2 tahun yaitu Rp Contoh 3Rudi menabung setiap bulan di sebuah bank mulai bulan Januari 2016 dan seterusnya. Jika setoran pada bulan pertama menabung sebesar Rp dan setiap bulan berikutnya setoran Rudi bertambah Rp Hitunglah jumlah uang Rudi sampai akhir tahun 2019?PenyelesaianDiketahuia= setoran awalb= penambahan setiap bulan pada setoran berikutnyan=Januari 2016 – Desember 2019 = 412 = 48 bulanDitanya jumlah uang Rudi sampai akhir tahun 2019 ?Jawab$S_n$=n/2 {2a+n-1b} S₄₈ =48/2 {2 =24{ } =24{ =24{ = Jadi, jumlah uang Rudi sampai akhir tahun 2019 yaitu Rp Contoh 4Suatu keluarga mempunyai enam anak yang usianya pada saat ini membentuk barisan aritmetika. Jika usia anak ketiga adalah 7 tahun dan usia anak kelima adalah 12 tahun, maka jumlah usia enam anak tersebut adalah…PenyelesaianDiketahuin=6 banyaknya anak dalam keluarga tersebutU₃= 7 usia anak ketigaU₅=12 usia anak kelimaDitanya jumlah usia keenam anak tersebut S₆Untuk mencari jumlah usia keenam anak S, yang kita perlukan yaitu n, a dan n telah kita ketahui, namun nilai a dan b belum kita akan mencari nilai a dan b dari U₃ dan U₅$U_n$=a+n-1bU₃=7a+3-1b=7a+2b=7 [pers 1]U₅=12 a+5-1b=12a+4b=14 [pers 2]Eliminasikan pers 1 dan pers 2a+2b=7a+4b=12————— –-2b=-5b=5/2Substitusikan b=5/2 ke dalam salah satu persamaan. Akan saya substitusikan kedalam pers telah kita peroleh a=2 dan b=5/2 , maka dengan mudah akan kita peroleh jumlah usia keenam anak tersebut.$S_n$=n/2 {2a+n-1b } S₆=6/2 {22+6-15/2} =3{4+25/2} =3{33/2} =99/2=49,5 Dengan demikian, jumlah usia keenam anak tersebut adalah 49,5 tahun Semoga Bermanfaat. sheetmath COBA GRATISKonsep Kilat0%GRATISPrasyarat Barisan dan Deret0%Suku Tengah dan Sisipan Aritmetika dan Geometri0%Deret Geometri Tak Hingga0%Aplikasi Deret Aritmetika dan Geometri0%Latihan Soal Barisan dan Deret0%

baris dan deret kelas 10